

Shear History Extensional Rheology Experiment II (SHERE II)

PI: Prof. Gareth McKinley, MIT **PS/PM:** Nancy R. Hall, NASA GRC

Engineering Team: ZIN Technologies, Inc.

Objective:

- To investigate of the effect of preshearing on the stress/strain response of a model filled viscoelastic suspension (consisting of inert rigid non-Brownian microspheres dispersed in a dilute polymer solution) being stretched in microgravity.
 - Will investigate a controlled preshear history (from no preshear to very strong preshear) for a specified period. Then shear flow is halted and followed by exponentially increasing elongation profile axially to the polymeric liquid.

Relevance/Impact:

- Allows optimization of polymer processing operations that involved *complex flows*, i.e., both *shearing* ("rotation") and *elongation* ("stretching").
- Understanding the rheological properties of highly viscoelastic suspensions may be of paramount importance for lunar in-situ resource utilization and for the future construction of a permanent lunar base.

Development Approach:

- SHERE flight experiment and design leverages off of the Extensional Rheology Experiment (ERE) sounding rocket experiment which studied the uniaxial stretching flow of a polymeric liquid.
- Protoflight approach used for flight hardware development.
- Fluid modules returned from ISS, cleaned and refilled with new flud samples.
- A high fidelity operational trainer is available.
- Experiment is set up and run by an astronaut. Some telemetry is viewed on the ground.

SHERE hardware in GBX

Glenn Research Center

SHERE flight hardware

ISS Resource Requirements

Accommodation (carrier)	Microgravity Science Glovebox						
Upmass (kg) (w/o packing factor)	29.1 - Main Hardware (on orbit) 7.3 - Fluid Module Stowage Tray						
Volume (m³) (w/o packing factor)	0.100 - Main Hardware (on orbit) 0.012 - Fluid Module stowage Tray						
Power (kw) (peak)	0.085						
Crew Time (hrs) (installation/operations	33 crew time						
Autonomous Ops (hrs)	24						
Launch/Increment	ULF-5 (Middeck) - Fluid Module stowage Tray						

Project Life Cycle Schedule

Milestones	SCR	RDR	PDR	Design Rvw	VRR	Ph III FSR	FHA	Launch	Ops	Return	Final Report
Fluid Modules (25)	N/A	N/A	N/A	2Q10	N/A	2Q10	3/10	6/10	Inc 22-24	TBD	
Documentation	Website: http://spaceflightsystems.grc.nasa.gov/Advanced/ISS Research/MSG/SHERE/ eRoom: SHERE				SRD: signed, in eroom EDMP:			Project Plan: in eroom SEMP: N/A			

Revision Date: 8/2009